Beyond the mean: long-term variabilities in precipitation and temperature on the Qinghai-Tibetan Plateau

Author:

Guo Tong1,Tang Yanhong1

Affiliation:

1. a Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China

Abstract

AbstractLong-term variabilities in daily precipitation and temperature are critical for assessing the impacts of climate change on ecosystems. We characterized intra- and interannual variabilities in daily precipitation and temperature obtained from 1960 to 2015 at 78 meteorological stations on the Qinghai-Tibetan Plateau. The results show that 1) The intra-annual variability of daily precipitation increases for 55 meteorological stations with a rate of 0.08 mm per decade. In contrast, the intra-annual variability markedly decreases for daily mean, daytime mean, and nighttime mean temperatures with a rate of 0.09, 0.07, and 0.12 °C per decade, respectively at 90% or more of stations. 2) Variabilities of daily precipitation and temperatures are quite sensitive to high altitudes (> 3500 m). The intra- and interannual variabilities of daily precipitation significantly decrease at 1.0 and 0.07 mm per 1000 m, respectively. However, variations of high altitudes increase the intra- and interannual variabilities of daily mean temperature at 1.0 °C and 0.2 °C per 1000 m. Moreover, the interannual variability of nighttime mean temperature varies at 0.3 °C per 1000 m, the fastest rate among three temperature indices. 3) A larger mean annual precipitation is accompanied by a higher intra- and interannual variability of daily precipitation on the Qinghai-Tibetan Plateau; however, a higher mean annual temperature leads to lower variabilities of daily temperatures. This study illustrates that long-term climatic variability is understudied in alpine ecosystems characterized by high climatic sensitivity. Precipitation and temperature variabilities should be characterized to improve predictions of vulnerable ecosystems responding to climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3