Spatiotemporal Analysis of Extreme Precipitation in the Missouri River Basin from 1950 – 2019

Author:

Flanagan Paul1,Mahmood Rezaul23

Affiliation:

1. 1 United States Department of Agriculture, Agricultural Research Service, El Reno, Oklahoma, USA

2. 2 High Plains Regional Climate Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

3. 3 School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

AbstractExtreme precipitation events are challenging to local and regional stakeholders across the United States. The Missouri River Basin (MoRB), covering an area over 1.29 million km2, is prone to extreme precipitation events. These events are exacerbated by the complex terrain in the west and the numerous weather and climate features which impact the region on a seasonal/annual basis (low-level jets, mesoscale convective systems, extreme cold air intrusions, etc.). Without an in-depth analysis of extreme precipitation in the MoRB, the evolving nature of extreme precipitation is not known. This warrants an analysis of extreme precipitation, especially relating to sub-annual variations when extreme precipitation is more impactful. To this end, data from 131 United States Historical Climatology Network (USHCN) stations were used to determine the nature of extreme precipitation from 1950 – 2019. Annual 99th percentile and annual station maximum precipitation events occur more frequently in the eastern MoRB than in the western MoRB, in line with the annual precipitation climatology. Results show that 99th percentile events and annual station maximum precipitation events are becoming more frequent across the MoRB. Through analysis of 3-month extreme precipitation trends, areas in the eastern and southern MoRB are shown to have an increasing event frequency and intensity. Frequency shifts in the 99th percentile events, however, have occurred across the entire region. The increasing frequency of extreme events in the western MoRB represent a significant change for the hydroclimate of the region. Overall, the results from this work show that MORB extreme precipitation has increased in frequency and intensity during the 1950 – 2019 period.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3