Abstract
Abstract
Surface-based inversions (SBIs) are significant and common natural phenomena in the planetary boundary layer, and they play essential roles in weather and climate. This study used radiosonde data from 493 radiosonde stations worldwide from the Integrated Global Radiosonde Archive (IGRA) during 1989–2019 to investigate the variations in surface-based inversions from a global perspective. The results indicated that from 1989 to 2019, the SBI frequency increased, and the SBI strength variations with fluctuations and SBI depth decreased over the study period. However, the spatial distribution of frequency, strength, and depth did not have consistent trends. Compared with the Southern Hemisphere, SBIs in the Northern Hemisphere occurred more frequently and were stronger and deeper. In terms of stations over land and the ocean, we found that the SBI frequency over the ocean has increased faster than that over land in the past 15 years, and the SBI strength over land was almost twice that of the ocean. The amplitudes of the annual cycle of SBI characteristics over land were greater than over the ocean in both hemispheres, and the frequency, strength, and depth were greater over land. This study investigated surface-based inversions from a global perspective and filled a gap in the current research on SBIs.
Publisher
American Meteorological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献