Evaluating Winter Precipitation over the Western Himalayas in a High-Resolution Indian Regional Reanalysis Using Multisource Climate Datasets

Author:

Nischal 1ORCID,Attada Raju1,Hunt Kieran M. R.2

Affiliation:

1. a Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India

2. b National Centre for Atmospheric Science, Department of Meteorology, University of Reading, United Kingdom

Abstract

Abstract Considerable uncertainties are associated with precipitation characteristics over the western Himalayan region (WHR). These are due to typically small-scale but high-intensity storms caused by the complex topography that are under-resolved by a sparse gauge network. Additionally, both satellite and gauge precipitation measurements remain subject to systematic errors, typically resulting in underestimation over mountainous terrains. Reanalysis datasets provide prospective alternative but are limited by their resolution, which has so far been too coarse to properly resolve orographic precipitation. In this study, we evaluate and cross compare Indian Monsoon Data Assimilation and Analysis (IMDAA), the first high-resolution (12 km) regional reanalysis over India, with various precipitation products during winter season over WHR. We demonstrate IMDAA’s efficiency in representing winter precipitation characteristics at seasonal, diurnal, interannual scales, as well as heavy precipitation associated with western disturbances (WDs). IMDAA shows closer agreement to other reanalyses than to gauge-based and satellite products in error and bias analysis. Although depicting higher magnitudes, its fine resolution allows a much closer insight into localized spatial patterns and the diurnal cycle, a key advantage over other datasets. Mean winter precipitation over WHR shows a significant decreasing trend in IMDAA, despite no significant trend in the frequency of WDs tracked in either IMDAA or ERA5. The study also exhibits the potential use of IMDAA for characterizing winter atmospheric dynamics, both for climatological studies and during WD activity such as localized valley winds. Overall, these findings highlight the potential utility for IMDAA in conducting monitoring and climate change impact assessment studies over the fragile western Himalayan ecosystem.

Funder

Science and Engineering Research Board, Department of Science and Technology

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3