Unsupervised Clustering of Geostationary Satellite Cloud Properties for Estimating Precipitation Probabilities of Tropical Convective Clouds

Author:

Kim Doyi1ORCID,Kim Hee-Jae2,Choi Yong-Sang1

Affiliation:

1. a Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, South Korea

2. b Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, South Korea

Abstract

Abstract Understanding the growth of tropical convective clouds (TCCs) is of vital importance for the early detection of heavy rainfall. This study explores the properties of TCCs that can cause them to develop into clouds with a high probability of precipitation. Remotely sensed cloud properties, such as cloud-top temperature (CTT), cloud optical thickness (COT), and cloud effective radius (CER) as measured by a geostationary satellite are trained by a neural network. First, the image segmentation algorithm identifies TCC objects with different cloud properties. Second, a self-organizing map (SOM) algorithm clusters TCC objects with similar cloud microphysical properties. Third, the precipitation probability (PP) for each cluster of TCCs is calculated based on the proportion of precipitating TCCs among the total number of TCCs. Precipitating TCCs can be distinguished from nonprecipitating TCCs using Integrated Multi-Satellite Retrievals for Global Precipitation Measurement precipitation data. Results show that SOM clusters with a high PP (>70%) satisfy a certain range of cloud properties: CER ≥ 20 μm and CTT < 230 K. PP generally increases with increasing COT, but COT cannot be a clear cloud property to confirm a high PP. For relatively thin clouds (COT < 30), however, CER should be much larger than 20 μm to have a high PP. More importantly, these TCC conditions associated with a PP ≥ 70% are consistent across regions and periods. We expect our results will be useful for satellite nowcasting of tropical precipitation using geostationary satellite cloud properties. Significance Statement We aim to identify the properties of tropical convective clouds (TCCs) that have a high precipitation probability. We designed a two-step framework to identify TCC objects and the conditions of cloud properties for TCCs to have a high precipitation probability. The TCCs with a precipitation probability > 70% tend to have a low cloud-top temperature and a cloud particle effective radius ≥ 20 μm. Cloud optical thicknesses are distributed over a wide range, but thinning requires a particle radius larger than 20 μm. These conditions of cloud properties appear to be unchanged under various spatial–temporal conditions over the tropics. This important observational finding advances our understanding of the cloud–precipitation relationship in TCCs and can be applied to satellite nowcasting of precipitation in the tropics, where numerical weather forecasts are limited.

Funder

National Research Foundation of Korea

Chung Mong-Koo Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

1. The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array;Arkin, P. A.,1979

2. Diurnal variation and life‐cycle of deep convective systems over the tropical Pacific warm pool;Chen, S. S.,1997

3. Earth and environmental remote sensing community in South Korea: A review;Choi, Y.-S.,2015

4. An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) imagery;Choi, Y.-S.,2007

5. The Indo-Pacific warm pool: Critical to world oceanography and world climate;De Deckker, P.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3