Characteristics of Temperature and Humidity Inversions Based on High-Resolution Radiosonde Observations at Three Arctic Stations

Author:

Zhang Yehui12,Zhang Birong12,Yang Na12

Affiliation:

1. a Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

2. b School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

AbstractThe Global Climate Observing System Reference Upper-Air Network (GRUAN) with high-vertical-resolution radiosonde data at three Arctic stations and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA5) were used to investigate the characteristics of multiple temperature inversions (TI) and humidity inversions (HI) in this study. It is found that surface-based inversion (SBI) at two coastal stations exists throughout the whole year, mainly due to the surface cooling in cold months, advection warm months, and the orography of the stations. The seasonal variation of surfaced-based HI (SBHI) frequency is similar to that of SBI, and its intensity is greater in summer because of the larger air moisture content. The frequency of the first elevated TI (EI1) and HI (EHI1) are both higher than that of the surface-based ones. The second elevated TI/HI layer (EI2/EHI2) is shallower and weaker than that of the EI1/EHI1. At two coastal stations, EI1 caused by warm advection is thicker and stronger than that caused by subsidence. At the station farther from the coast, EI1 caused by subsidence is higher, thinner, and stronger. The top height and depth of the EHI2 both show seasonal variations, with larger values in the cold months. EHI1 tends to be formed by the TI, whereas EHI2 is dominant by humidity advection at all studied stations. HI under the influence of TI is usually thicker and stronger than that formed by humidity advection. The coexistence of EI and EHI is the most frequent inversion structure at these stations.

Funder

National Key Research and Development Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3