Understanding Errors in Cloud Liquid Water Path Retrievals Derived from CloudSat Path-Integrated Attenuation

Author:

Lebsock Matthew1,Takahashi Hanii12,Roy Richard1,Kurowski Marcin J.1,Oreopoulos Lazaros3

Affiliation:

1. a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. b Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, California

3. c Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract An algorithm that derives the nonprecipitating cloud liquid water path Wcld from CloudSat using a surface reference technique (SRT) is presented. The uncertainty characteristics of the SRT are evaluated. It is demonstrated that an accurate analytical formulation for the pixel-scale precision can be derived. The average precision of the SRT is estimated to be 34 g m−2 at the individual pixel scale; however, precision systematically decreases from around 30 to 40 g m−2 as cloud fraction varies from 0% to 100%. The retrievals of clear-sky Wcld have a mean bias of 0.9 g m−2. Output from a large-eddy simulation coupled to a radar simulator shows that an additional bias of −8% may result from nonuniformity within the footprint of cloudy pixels. The retrieval yield for the SRT, measured relative to all warm clouds over ocean between 60°N and 60°S latitude is 43%. The SRT Wcld is compared with one estimate of Wcld from the Moderate Resolution Imaging Spectroradiometer (MODIS) using an adiabatic cloud profile and an effective radius derived from 3.7-μm reflectance. A strong correlation between the mean MODIS Wcld and SRT Wcld is found across diverse cloud regimes, but with biases in the mean Wcld that are cloud-regime dependent. Overall, the mean bias of the SRT relative to MODIS is −13.1 g m−2. Systematic underestimates of Wcld by the SRT resulting from nonuniform beamfilling cannot be ruled out as an explanation for the retrieval bias.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3