Storm Surge, Blocking, and Cyclones: A Compound Hazards Analysis for the Northeast United States

Author:

Booth James F.1234,Narinesingh Veeshan124,Towey Katherine L.13,Jeyaratnam Jeyavinoth13

Affiliation:

1. a Department of Earth and Atmospheric Sciences, City University of New York –City College, New York, NY

2. b Department of Physics, City University of New York – The Graduate Center, New York, NY

3. c NOAA-CESSRST, City University of New York – City College, New York, NY

4. d Department of Earth and Environmental Sciences, City University of New York – The Graduate Center, New York, NY

Abstract

AbstractStorm surge is a weather hazard that can generate dangerous flooding and is not fully understood in terms of timing and atmospheric forcing. Using observations along the Northeast United States, surge is sorted based on duration and intensity to reveal distinct time-evolving behavior. Long-duration surge events slowly recede, while strong, short-duration events often involve negative surge in quick succession after the maximum. Using Lagrangian track information, the tropical and extratropical cyclones and atmospheric blocks that generate the surge events are identified. There is a linear correlation between surge duration and surge maximum, and the relationship is stronger for surge caused by extratropical cyclones as compared to those events caused by tropical cyclones. For the extremes based on duration, the shortest-duration strong surge events are caused by tropical cyclones, while the longest-duration events are most often caused by extratropical cyclones. At least half of long-duration surge events involve anomalously strong atmospheric blocking poleward of the cyclone, while strong, short-duration events are most often caused by cyclones in the absence of blocking. The dynamical influence of the blocks leads to slow-moving cyclones that take meandering paths. In contrast, for strong, short-duration events, cyclones travel faster and take a more meridional path. These unique dynamical scenarios provide better insight for interpreting the threat of surge in medium-range forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3