Extending the Heat Index

Author:

Lu Yi-Chuan12,Romps David M.23

Affiliation:

1. a Department of Physics, University of California, Berkeley, California

2. b Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

3. c Department of Earth and Planetary Science, University of California, Berkeley, California

Abstract

Abstract The heat index is a widely used measure of apparent temperature that accounts for the effects of humidity using Steadman’s model of human thermoregulation. Steadman’s model, however, gives unphysical results when the air is too hot and humid or too cold and dry, leading to an undefined heat index. For example, at a relative humidity of 80%, the heat index is only defined for temperatures in the range of 288–304 K (59°–88°F). Here, Steadman’s thermoregulation model is extended to define the heat index for all combinations of temperature and humidity, allowing for an assessment of Earth’s future habitability. The extended heat index can be mapped onto physiological responses of an idealized human, such as heat exhaustion, heat stroke, and even heat death, providing an indication of regional health outcomes for different degrees of global warming. Significance Statement The existing heat index is well-defined for most combinations of high temperature and humidity experienced on Earth in the preindustrial climate, but global warming is increasingly generating conditions for which the heat index is undefined. Therefore, an extension of the original heat index is needed. When extending the heat index, we use the same physiological model as in the original work of Steadman to ensure backward compatibility. Following Steadman, each value of the heat index is mapped onto a measurable physiological variable, which can be useful for assessing the health impacts of various combinations of temperature and humidity, especially for outdoor workers.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3