A Novel Deep Learning Model by BiGRU with Attention Mechanism for Tropical Cyclone Track Prediction in the Northwest Pacific

Author:

Abstract

Abstract Tropical cyclones are among the most powerful and destructive meteorological systems on Earth. In this paper, we propose a novel deep learning model for tropical cyclone track prediction method. Specifically, the track task is regarded as a time series predicting challenge, and then a deep learning framework by a bidirectional gate recurrent unit network (BiGRU) with attention mechanism is developed for track prediction. This proposed model can excavate the effective information of the historical track in a deeper and more accurate way. Data experiments are conducted on tropical cyclone best-track data provided by the Joint Typhoon Warning Center (JTWC) from 1988 to 2017 in the northwestern Pacific Ocean. Results show that our model performs well for tracks of 6, 12, 24, 48, and 72 h in the future. The prediction results show that our proposed combined model is superior to state-of-the-art deep learning models, including a recurrent neural network (RNN), long short-term memory neural network (LSTM), gate recurrent unit network (GRU), and BiGRU without the use of attention mechanism. In comparison with the methods used by the China Meteorological Administration, Japan Meteorological Agency, and the JTWC, our method has obvious advantages in the mid- to long-term track forecasting, especially in the next 72 h.

Funder

National Key Research and Development Program

Natural Science Foundation of China

Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. A barotropic model for operational prediction of tracks of tropical storms;Sanders;J. Appl. Meteor. Climatol.,1975

2. Verification on forecasts of tropical cyclones over northwest Pacific in 2015 (in Chinese);Chen;Meteor. Mon.,2017

3. Verification on forecasts of tropical cyclones over western North Pacific and South China Sea in 2017 (in Chinese);Chen;Meteor. Mon.,2019

4. An operational experiment in the statistical-dynamical prediction of tropical cyclone motion;Neumann;Mon. Wea. Rev.,1975

5. An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins;DeMaria;Wea. Forecasting,1999

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3