Two-Stage Artificial Intelligence Algorithm for Calculating Moisture-Tracking Atmospheric Motion Vectors

Author:

Abstract

Abstract Much of the errors of atmospheric motion vectors (AMV) may be a consequence of algorithms not incorporating dynamical information. A physics-informed, artificial intelligence algorithm was developed that corrects errors of moisture tracking AMV (from the movement of water vapor) using numerical weather prediction (NWP) fields. The University of Arizona (UA) algorithm uses a variational method as a first step (fsUA); the second step then filters the first-stage AMVs using a random forest model that learns the error correction from NWP fields. The UA algorithm is compared with a traditional image feature tracking algorithm (JPL) using a global nature run as the “ground truth.” Experiments use global all-sky humidity fields at 500 and 850 hPa for 1–3 January 2006 and 1–3 July 2006. UA outputs AMVs with root-mean-square vector differences (RMSVDs) of 2 m s−1 for the tropics and ∼2–3 m s−1 for midlatitudes and the poles, whereas JPL outputs much higher RMSVDs of ∼3 m s−1 for the tropics and ∼3–9 m s−1 for the midlatitudes and poles. Although the algorithm fsUA produces approximately the same global RMSVDs as the JPL algorithm, fsUA has a higher resolution since it outputs an AMV per pixel, whereas the JPL algorithm uses a target box that effectively smooths the vectors. Furthermore, UA’s RMSVDs are lower than the intrinsic error (calculated from the differences between two reanalysis datasets). Even for error-prone regions with low moisture gradients and where winds are oriented along moisture isolines, UA’s absolute speed difference with “truth” stays within ∼3 m s−1.

Funder

Arizona Space Institute

national aeronautics and space administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3