Assessing Heavy Precipitation Risk Associated with Tropical Cyclones in China

Author:

Niu Yilong12,Touma Danielle3,Ting Mingfang4,Camargo Suzana J.4,Chen Ruishan125

Affiliation:

1. a Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China

2. b School of Geographic Sciences, East China Normal University, Shanghai, China

3. c Bren School of Environmental Science and Management, University of California, Santa Barbara, California

4. d Lamont‐Doherty Earth Observatory, Columbia University, Palisades, New York

5. e Institute of Eco-Chongming, East China Normal University, Shanghai, China

Abstract

Abstract Tropical cyclone precipitation (TCP), accounting for some of the most extreme rainfall events, can lead to severe flooding and landslides, which often occur together as compound natural hazards during a tropical cyclone landfall. The impact due to TCP is largely associated with its intensity and spatial extent as the storm approaches landfall. Yet it is not entirely clear how TCP intensity and spatial extent vary from one tropical cyclone to another. In this study, we employ an advanced geostatistical framework to determine the TCP intensity and spatial extent along cyclone tracks for different cyclone categories, defined using the wind speed and tropical cyclone lifetime maximum intensity (LMI) at each track point (“point intensity-LMI”). The results show that when a tropical cyclone with an LMI of a supertyphoon makes landfall and has weakened to tropical storm strength it usually produces the most intense rainfall and covers the largest spatial extent. The total TCP amount estimated using the varying spatial extent helps to determine more accurately the amount of seasonal rainfall that is from tropical cyclones in China. We also determined the rainfall trend from 1951 to 2019 for TCP and found that when compared with the inland stations the historical TCP rainfall trend in those stations near the coastline of China is significantly increasing. Significance Statement Heavy rainfall caused by tropical cyclones has caused huge direct or indirect economic losses in the coastal areas of China. This impact is particularly significant when the rainfall intensity is high and the area of heavy rainfall is extensive. Here we investigate the rainfall intensity and spatial extent by classifying and comparing the different types of tropical cyclones impacting China with varying intensities. To do this, we group the tropical cyclone tracks of the western North Pacific Ocean during the last seven decades according to the strength of wind speed across the cyclone tracks. We found that the largest areas and heaviest intensities of rainfall occur when a supertyphoon has weakened to a tropical storm at landfall. When considering all tropical cyclones and their rainfall contribution to rainfall over land stations, we found that tropical cyclone rainfall has become heavier in most coastal areas of China.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3