Fine-scale characteristics of summer precipitation over Cang Mountain

Author:

Zhang Mengke1,Li Jian2,Li Nina3

Affiliation:

1. Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China, Dali National Climate Observatory, Dali, China

3. National Meteorological Center, Beijing, China

Abstract

AbstractFine-scale characteristics of summer precipitation over Cang Mountain, a long and narrow mountain with a quasi-north-south orientation in Southwest China, are studied based on station and radar data. Three kinds of rainfall processes are classified according to the initial stations of regional rainfall events (RREs) by utilizing minute-scale rain gauge data. RREs initiating in the western part of Cang Mountain exhibit eastward evolution and tend to reach their maximum rainfall intensity on the mountaintop. The results indicate differences in the precipitation evolution characteristics between short-duration (1–3 h) and long-duration (at least 6 h) events. Short-duration events begin farther from the mountaintop and then propagate eastward, while long-duration events remain longer around the mountaintop. RREs that initiate from the eastern part of Cang Mountain display westward propagation and frequently reach their maximum rainfall intensity over the eastern slope of the mountain. Among them, short-duration events tend to propagate farther west of Cang Mountain at high speeds, but the westward evolution of long-duration events is mainly confined to the eastern part of Cang Mountain. For mountaintop-originated RREs, precipitation quickly reaches its maximum intensity after it starts and then continues for a long time around the mountaintop during the period from late afternoon to early morning. These findings provide references for the fine-scale prediction of precipitation evolution in small-scale mountainous areas.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3