Testing Passive Microwave-Based Hail Retrievals Using GPM DPR Ku-Band Radar

Author:

Bang Sarah D.1,Cecil Daniel J.2

Affiliation:

1. a NASA Postdoctoral Program, NASA Marshall Space Flight Center, Huntsville, Alabama

2. b NASA Marshall Space Flight Center, Huntsville, Alabama

Abstract

AbstractSeveral studies in the literature have developed approaches to diagnose hail storms from satellite-borne passive microwave imagery and build nearly global climatologies of hail. This paper uses spaceborne Ku-band radar measurements from the Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar (DPR) to validate several passive microwave approaches. We assess the retrievals on the basis of how tightly they constrain the radar reflectivity at −20°C and how this measured radar reflectivity aloft varies geographically. The algorithm that combines minimum 19-GHz polarization corrected temperature (PCT) with a 37-GHz PCT depression normalized by tropopause height constrains the radar reflectivity most tightly and gives the least appearance of regional biases. A retrieval that is based on a 19-GHz PCT threshold of 261K also produces tightly clustered profiles of radar reflectivity, with little regional bias. An approach using regionally adjusted minimum 37-GHz PCT performs relatively well, but our results indicate it may overestimate hail in some subtropical and midlatitude regions. A threshold applied to the minimum 37-GHz PCT (≤230 K), without any scaling by region or probability of hail, overestimates hail in the tropics and underestimates beyond the tropics. For all retrieval approaches, storms identified as having hail tended to have radar reflectivity profiles that are consistent with general expectations for hailstorms (reflectivity > 50 dBZ below the 0°C level, and > 40 dBZ extending far above 0°C). Profiles from oceanic regions tended to have more rapidly decreasing reflectivity with height than profiles from other regions. Subtropical, high-latitude, and high-terrain land profiles had the slowest decreases of reflectivity with height.

Funder

National Aeronautics and Space Administration

Universities Space Research Association

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3