Detection and Tracking of Tropical Convective Storms Based on Globally Gridded Precipitation Measurements: Algorithm and Survey over the Tropics

Author:

Takahashi Hanii12,Lebsock Matthew2,Luo Zhengzhao Johnny3,Masunaga Hirohiko4,Wang Cindy5

Affiliation:

1. a Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California

2. b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

3. c Department of Earth and Atmospheric Sciences, City University of New York, City College, New York

4. d Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

5. e Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Abstract

AbstractThis paper is the first attempt to document a simple convection-tracking method based on the IMERG precipitation product to generate an IMERG-based Convection Tracking (IMERG-CT) dataset. Up to now, precipitation datasets have been Eulerian accumulations. Now with IMERG-CT, we can estimate total rainfall based on Lagrangian accumulations, which is a very important step in diagnosing cloud-precipitation process following the evolution of air masses. Convection-tracking algorithms have traditionally been developed on the basis of brightness temperature (Tb) from satellite infrared (IR) retrievals. However, vigorous rainfall can be produced by warm-topped systems in a moist environment; this situation cannot be captured by traditional IR-based tracking but is observed in IMERG-CT. Therefore, an advantage of IMERG-CT is its ability to include the previously missing information of shallow clouds that grow into convective storms, which provides us more-complete life cycle records of convective storms than traditional IR-based tracking does. This study also demonstrates the utility of IMERG-CT through investigating various properties of convective systems in terms of the evolution before and after peak precipitation rate and amount. For example, composite analysis reveals a link between evolution of precipitation and convective development: the signature of stratiform anvils remaining after the storm has produced the maximum rainfall, as average Tb stays almost constant for 5 h after the peak of precipitation. Our study highlights the importance of joint analysis of cloud and precipitation data in time sequence, which helps to elucidate the underlying dynamic processes producing tropical rainfall and its resultant effects on the atmospheric thermodynamics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3