Impacts of Multiscale Components of Initial Perturbations on Error Growth Characteristics and Ensemble Forecasting Skill

Author:

Wang Jingzhuo123,Chen Jing123,Zhang Hanbin4,Ma Ruoyun123,Chen Fajing123

Affiliation:

1. a CMA Earth System Modeling and Prediction Centre, China Meteorological Administration, Beijing, China

2. b State Key Laboratory of Severe Weather, China Meteorological Administration, Beijing, China

3. c Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, China

4. d Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

Abstract

Abstract To compare the roles of two kinds of initial perturbations in a convection-permitting ensemble prediction system (CPEPS) and reveal the effects of the differences in large-scale/small-scale perturbation components on the CPEPS, three initial perturbation schemes are introduced, including a dynamical downscaling (DOWN) scheme originating from a coarse-resolution model, a multiscale ensemble transform Kalman filter (ETKF) scheme, and a filtered ETKF (ETKF_LARGE) scheme. First, the comparisons between the DOWN and ETKF schemes reveal that they behave differently in many ways. Specifically, the ensemble spread and forecast error for precipitation in the DOWN scheme are larger than those in the ETKF; the probabilistic forecasting skill for precipitation in the DOWN scheme is better than that in the ETKF at small neighborhood radii, whereas the advantages of the ETKF begin to appear as the neighborhood radius increases; DOWN possesses better spread–skill relationships than ETKF and has comparable probabilistic forecasting skills for nonprecipitation. Second, the comparisons between DOWN and ETKF_LARGE indicate that the differences in the large-scale initial perturbation components are key to the differences between DOWN and ETKF. Third, the comparisons between ETKF and ETKF_LARGE demonstrate that the small-scale initial perturbations are important since they can increase the precipitation spread in the early times and decrease the forecast errors while simultaneously improving the probabilistic forecasting skill for precipitation. Given the advantages of the DOWN and ETKF schemes and the importance of both large-scale and small-scale initial perturbations, multiscale initial perturbations should be constructed in future research.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference65 articles.

1. Seeding chaos: The dire consequence of numerical noise in NWP perturbation experiments;Ancell, B. C.,2018

2. Development and verification of two convection-allowing multi-model ensembles over western Europe;Beck, J.,2016

3. Regional ensemble forecasts using the ensemble transform technique;Bishop, C. H.,2009

4. Impact of stochastic physics in a convection-permitting ensemble;Bouttier, F.,2012

5. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system;Bowler, N. E.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3