Detailed Mapping and Modeling of Urban Vegetation: What Are the Benefits for Microclimatic Simulations with Town Energy Balance (TEB) at Neighborhood Scale?

Author:

Bernard Émilie12,Munck Cécile de1,Lemonsu Aude1

Affiliation:

1. a CNRM, Météo-France/CNRS, Toulouse, France

2. b Université Gustave Eiffel, Bouguenais, France

Abstract

Abstract Cities develop a specific climate related to their morphology and the materials that constitute them. The addition of vegetation in urban areas induces cooling and shading effects that can modify local climate and thermal comfort conditions. The Town Energy Balance (TEB) urban canopy model offers several configurations for a more or less fine-tuned consideration of natural covers and associated physical processes in the urban environment. This study aims to evaluate the sensitivity of TEB to the representation of vegetation and the resolution of the chosen databases in the simulation of microclimatic variables, at the scale of a heterogeneous urban neighborhood located in Toulouse, France. First, the effect of the improved description of the vegetation input to the model is highlighted by comparing the results obtained with a readily available national database and then with a very-high-resolution satellite-derived vegetation database. Second, the two vegetation parameterizations, with or without explicit tree stratum, that are available in the TEB model are evaluated and compared. Measurements carried out on specific routes and stop points in a neighborhood of Toulouse allowed microclimatic variables to be evaluated. Results show that refining the vegetation database can somehow improve the modeling of air temperature. As a result of enhancing the vegetation description in the model, that is, physical processes associated with the presence of trees in urban canyons, the air temperature, but also the wind and the thermal comfort index, are better simulated. These results are encouraging for the use of TEB as a decision support tool for urban planning purposes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3