Late-Winter and Springtime Temperature Variations throughout New Jersey in a Warming Climate

Author:

Garner Andra J.1ORCID,Duran Daniel P.1

Affiliation:

1. a Department of Environmental Science, Rowan University, Glassboro, New Jersey

Abstract

Abstract Large temperature variations in a temperate climate, particularly in late winter and early spring, can be disruptive for native ecosystems and agricultural crops. As warmer temperatures occur earlier in the year in midlatitude regions as a result of anthropogenic climate change, springtime temperatures may become less consistent, leading to potential damage to species and crops that are vulnerable to the return of historically cooler temperatures, including late-spring frosts, after an initial warm-up. In this work, we quantify shifting patterns in late-winter and springtime temperature variations at eight sites across New Jersey from 1950 to 2019. Many sites located along the coast or in the coastal plain experience increases in the number of times the temperature climbs above 15.5°C (60°F) and then falls below freezing (i.e.,0°C, or 32°F). Sites in southern New Jersey (where much of the state’s agriculture is located) experience the most significant (P < 0.05) increases in large springtime temperature variations. Across all sites, there is a general increase in both the percentage and magnitude of temperature variations that occur as early as February. At 75% of sites, day-to-day variation in daily maximum temperature has increased from the 1950s through 2019; day-to-day variation in daily minimum temperatures has increased over the same time at more than half of sites considered. These amplifications in extreme temperature variations indicate the need for both mitigation and adaptation strategies to protect vulnerable crops and ecosystems in the region during this critical time of the year. Significance Statement Human-caused climate change has made it more likely for warmer temperatures to occur earlier in the year, causing many locations to experience late-winter and early-springtime temperatures that are less consistent than they may have been in the past. These variations can be highly problematic for both vital agricultural crops and critical ecosystems. Here, we evaluate how late-winter and early-springtime temperatures have changed throughout New Jersey (home to a variety of agriculture and unique ecosystems) from the mid-twentieth century until 2019. We find critical changes to temperature patterns during late winter and early spring, including larger and more frequent temperature swings (particularly in February) and increased day-to-day variation in high and low temperatures.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference55 articles.

1. Spring plant phenology and false springs in the conterminous US during the 21st century;Allstadt, A. J.,2015

2. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest;Augspurger, C. K.,2009

3. The false spring of 2012, earliest in North American record;Ault, T. R.,2013

4. Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices;Ault, T. R.,2015

5. Climate-associated phenological advances in bee pollinators and bee pollinated plants;Bartomeus, I.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3