Evaluation and Comparison of MODIS and IMS Snow-Cover Estimates for the Continental United States Using Station Data

Author:

Brubaker K. L.1,Pinker R. T.2,Deviatova E.2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, Maryland

2. Department of Meteorology, University of Maryland at College Park, College Park, Maryland

Abstract

Abstract Satellite-derived information on fractional snow cover is essential to resource monitoring, hydrologic modeling, and climate change assessment. Evaluating the accuracy of remotely sensed snow-cover products is important but difficult, largely because point-scale surface observations are spatially sparse and generally nonrepresentative of the remote sensor footprint. In this study, two remotely sensed snow-cover products [the Interactive Multisensor Snow and Ice Mapping System (IMS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG), v.3] are evaluated against ground observations from the Cooperative Observing Network and SNOTEL on a daily basis over the continental United States for calendar year 2000. Ground observations are treated as points in space and time; no physical modeling or statistical interpolation is applied. Hypothesis tests based on discrete and continuous distributions are developed to assess agreement between ground observations and the remotely sensed snow-cover products at 0.25° resolution. (The MODIS CMG product was degraded from 0.05° for this study, thus its potential is not fully evaluated.) As overall snow extent increases in the course of the season, both MODIS and IMS improve in identifying snow-covered areas (fewer errors of omission), but deteriorate in identifying snow-free areas (more errors of commission). The detection of scattered areas of snow is generally better during ablation than during accumulation. Weaknesses of the statistical methods and assumptions are discussed. This work will help to identify areas for improvement in snow-cover detection algorithms and provides a framework to assess the accuracy of remotely sensed snow cover used as model input and/or confirmation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3