Dynamic Potential Vorticity Initialization and the Diagnosis of Mesoscale Motion

Author:

Viúdez Álvaro1,Dritschel David G.2

Affiliation:

1. Institut de Ciències del Mar, Barcelona, Spain

2. Mathematical Institute, University of St Andrews, St Andrews, United Kingdom

Abstract

Abstract A new method for diagnosing the balanced three-dimensional velocity from a given density field in mesoscale oceanic flows is described. The method is referred to as dynamic potential vorticity initialization (PVI) and is based on the idea of letting the inertia–gravity waves produced by the initially imbalanced mass density and velocity fields develop and evolve in time while the balanced components of these fields adjust during the diagnostic period to a prescribed initial potential vorticity (PV) field. Technically this is achieved first by calculating the prescribed PV field from given density and geostrophic velocity fields; then the PV anomaly is multiplied by a simple time-dependent ramp function, initially zero but tending to unity over the diagnostic period. In this way, the PV anomaly builds up to the prescribed anomaly. During this time, the full three-dimensional primitive equations—except for the PV equation—are integrated for several inertial periods. At the end of the diagnostic period the density and velocity fields are found to adjust to the prescribed PV field and the approximate balanced vortical motion is obtained. This adjustment involves the generation and propagation of fast, small-amplitude inertia–gravity waves, which appear to have negligible impact on the final near-balanced motion. Several practical applications of this method are illustrated. The highly nonlinear, complex breakup of baroclinically unstable currents into eddies, fronts, and filamentary structures is examined. The capability of the method to generate the balanced three-dimensional motion is measured by analyzing the ageostrophic horizontal and vertical velocity—the latter is the velocity component most sensitive to initialization, and one for which a quasigeostrophic diagnostic solution is available for comparison purposes. The authors find that the diagnosed fields are closer to the actual fields than are either the geostrophic or the quasigeostrophic approximations. Dynamic PV initialization thus appears to be a promising way of improving the diagnosis of balanced mesoscale motions.

Publisher

American Meteorological Society

Subject

Oceanography

Reference12 articles.

1. Iterated geostrophic intermediate models.;Allen;J. Phys. Oceanogr,1993

2. Atmospheric Data Analysis.;Daley,1991

3. A balanced approach to modelling rotating stably-stratified geophysical flows.;Dritschel;J. Fluid Mech,2003

4. The quasi-static equations of motion.;Eliassen;Geofys. Publ,1948

5. Consistent balance models in bounded and periodic domains.;Gent;Dyn. Atmos. Oceans,1983

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3