Cloud-Resolving Typhoon Rainfall Ensemble Forecasts for Taiwan with Large Domain and Extended Range through Time-Lagged Approach

Author:

Wang Chung-Chieh1,Huang Shin-Yi1,Chen Shin-Hau1,Chang Chih-Sheng1,Tsuboki Kazuhisa2

Affiliation:

1. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

2. Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya, Japan

Abstract

Abstract In this study, the performance of a new ensemble quantitative precipitation forecast (QPF) system for Taiwan, with a cloud-resolving grid spacing of 2.5 km, a large domain of 1860 km × 1360 km, and an extended range of 8 days, is evaluated for six typhoons during 2012–13. Obtaining the probability (ensemble) information through a time-lagged approach, this system combines the strengths of high resolution (for QPF) and longer lead time (for hazard preparation) in an innovative way. For the six typhoons, in addition to short ranges (≤3 days), the system produced a decent QPF at a longest range up to days 8, 4, 6, 3, 6, and 7, providing greatly extended lead times, especially for slow-moving storms that pose higher threats. Moreover, since forecast uncertainty (reflected in the spread) is reduced with lead time, this system can provide a wide range of rainfall scenarios across Taiwan with longer lead times, each highly realistic for the associated track, allowing for advanced preparation for worst-case scenarios. Then, as the typhoon approaches and the predicted tracks converge, the government agencies can make adjustments toward the scenario of increasing likelihood. This strategy fits well with the conventional wisdom of “hoping for the best, but preparing for the worst” when facing natural hazards. Overall, the system presented herein compares favorably in usefulness to a typical 24-member ensemble (5-km grid size, 750 km × 900 km, 3-day forecasts) currently in operation using similar computational resources. Requiring about 1500 cores to execute four 8-day runs per day, it is not only powerful but also affordable and feasible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3