Forewarned is Forearmed: Extended-Range Forecast Guidance of Recent Extreme Heat Events in Australia

Author:

Hudson D.1,Marshall A. G.1,Alves O.1,Young G.1,Jones D.1,Watkins A.1

Affiliation:

1. Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

Abstract There has been increasing demand in Australia for extended-range forecasts of extreme heat events. An assessment is made of the subseasonal experimental guidance provided by the Bureau of Meteorology’s seasonal prediction system, Predictive Ocean Atmosphere Model for Australia (POAMA, version 2), for the three most extreme heat events over Australia in 2013, which occurred in January, March, and September. The impacts of these events included devastating bushfires and damage to crops. The outlooks performed well for January and September, with forecasts indicating increased odds of top-decile maximum temperature over most affected areas at least one week in advance for the fortnightly averaged periods at the start of the heat waves and for forecasts of the months of January and September. The March event was more localized, affecting southern Australia. Although the anomalously high sea surface temperature around southern Australia in March (a potential source of predictability) was correctly forecast, the forecast of high temperatures over the mainland was restricted to the coastline. September was associated with strong forcing from some large-scale atmospheric climate drivers known to increase the chance of having more extreme temperatures over parts of Australia. POAMA-2 was able to forecast the sense of these drivers at least one week in advance, but their magnitude was weaker than observed. The reasonably good temperature forecasts for September are likely due to the model being able to forecast the important climate drivers and their teleconnection to Australian climate. This study adds to the growing evidence that there is significant potential to extend and augment traditional weather forecast guidance for extreme events to include longer-lead probabilistic information.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. Trends in Australia’s climate means and extremes: A global context;Alexander;Aust. Meteor. Mag.,2007

2. Understanding Australia’s hottest September on record [in “Explaining Extremes of 2013 from a Climate Perspective”];Arblaster;Bull. Amer. Meteor. Soc.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3