On Contrasting Ensemble Simulations of Two Great Plains Bow Echoes

Author:

Lawson John1,Gallus William A.1

Affiliation:

1. Iowa State University, Ames, Iowa

Abstract

Abstract Bow echo structures, a subset of mesoscale convective systems (MCSs), are often poorly forecast within deterministic numerical weather prediction model simulations. Among other things, this may be due to the inherent low predictability associated with bow echoes, deficient initial conditions (ICs), and inadequate parameterization schemes. Four different ensemble configurations assessed the sensitivity of the MCSs’ simulated reflectivity and radius of curvature to the following: perturbations in initial and lateral boundary conditions using a global dataset, different microphysical schemes, a stochastic kinetic energy backscatter (SKEB) scheme, and a mix of the previous two. One case is poorly simulated no matter which IC dataset or microphysical parameterization is used. In the other case, almost all simulations reproduce a bow echo. When the IC dataset and microphysical parameterization is fixed within a SKEB ensemble, ensemble uncertainty is smaller. However, while differences in the location and timing of the MCS are reduced, variations in convective mode remain substantial. Results suggest the MCS’s positioning is influenced primarily by ICs, but its mode is most sensitive to the model error uncertainty. Hence, correct estimation of model error uncertainty on the storm scale is crucial for adequate spread and the probabilistic forecast of convective events.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3