Impact of Density Gradients on Net Sediment Transport into the Wadden Sea

Author:

Burchard Hans1,Flöser Götz2,Staneva Joanna V.3,Badewien Thomas H.4,Riethmüller Rolf2

Affiliation:

1. Baltic Sea Research Institute Warnemünde, Rostock, Germany

2. GKSS Research Centre, Geesthacht, Germany

3. Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany

4. Institute of Physics, Carl von Ossietzky University, Oldenburg, Germany

Abstract

Abstract This study tests the hypothesis that horizontal density gradients have the potential to significantly contribute to the accumulation of suspended particulate matter (SPM) in the Wadden Sea. It is shown by means of long-term observations at various positions in the Wadden Sea of the German Bight that the water in the inner regions of the Wadden Sea is typically about 0.5–1.0 kg m−3 less dense than the North Sea water. During winter this occurs mostly because of freshwater runoff and net precipitation; during summer it occurs mostly because of differential heating. It is demonstrated with idealized one-dimensional water column model simulations that the interaction of such small horizontal density gradients with tidal currents generates net onshore SPM fluxes. Major mechanisms for this are tidal straining, estuarine circulation, and tidal mixing asymmetries. Three-dimensional model simulations in a semienclosed Wadden Sea embayment with periodic tidal forcing show that SPM with sufficiently high settling velocity (ws = 10−3 m s−1) is accumulating in the Wadden Sea Bight because of density gradients. This is proven through a comparative model simulation in which the dynamic effects of the density gradients are switched off, with the consequence of no SPM accumulation. These numerical model results motivate future targeted field studies in different Wadden Sea regions with the aim to further support the hypothesis.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3