What Controls the Transition from Shallow to Deep Convection?

Author:

Wu Chien-Ming1,Stevens Bjorn1,Arakawa Akio1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract In this study, a 2D cloud-system-resolving model (CSRM) is used to assess the control mechanism for the transition from shallow to deep convection in the diurnal cycle over land. By comparing with a 3D CSRM under conditions taken from the Large-Scale Biosphere–Atmosphere field study (in the Amazon), the authors show that the 2D CSRM reproduces the main features evident in previous 3D simulations reasonably well. To extract the essence of the transition from shallow to deep convection, the observed case is idealized to isolate two control parameters, the free troposphere stability and the relative humidity. The emergence of a distinct transition between shallow and deep convection shows that the convective transition is an intrinsic property of the system. A transition time is defined to evaluate the key mechanism of the transition. The authors show that the transition coincides with the time when the lapse rate of the virtual potential temperature of the clouds becomes larger than that of the environment, suggesting that the transition happens when shallow clouds become, on average, buoyant. This suggests that, given the opportunity, convection prefers to be shallow.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3