Possible Aerosol Effects on Lightning Activity and Structure of Hurricanes

Author:

Khain A.1,Cohen N.1,Lynn B.1,Pokrovsky A.1

Affiliation:

1. Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

Abstract According to observations of hurricanes located relatively close to the land, intense and persistent lightning takes place within a 250–300-km radius ring around the hurricane center, whereas the lightning activity in the eyewall takes place only during comparatively short periods usually attributed to eyewall replacement. The mechanism responsible for the formation of the maximum flash density at the tropical cyclone (TC) periphery is not well understood as yet. In this study it is hypothesized that lightning at the TC periphery arises under the influence of small continental aerosol particles (APs), which affect the microphysics and the dynamics of clouds at the TC periphery. To show that aerosols change the cloud microstructure and the dynamics to foster lightning formation, the authors use a 2D mixed-phase cloud model with spectral microphysics. It is shown that aerosols that penetrate the cloud base of maritime clouds dramatically increase the amount of supercooled water, as well as the ice contents and vertical velocities. As a result, in clouds developing in the air with high AP concentration, ice crystals, graupel, frozen drops and/or hail, and supercooled water can coexist within a single cloud zone, which allows collisions and charge separation. The simulation of possible aerosol effects on the landfalling tropical cyclone has been carried out using a 3-km-resolution Weather Research and Forecast (WRF) mesoscale model. It is shown that aerosols change the cloud microstructure in a way that permits the attribution of the observed lightning structure to the effects of continental aerosols. It is also shown that aerosols, which invigorate clouds at 250–300 km from the TC center, decrease the convection intensity in the TC center, leading to some TC weakening. The results suggest that aerosols change the intensity and the spatial distribution of precipitation in landfalling TCs and can possibly contribute to the weekly cycle of the intensity and precipitation of landfalling TCs. More detailed investigations of the TC–aerosol interaction are required.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3