Characterization of the Martian Surface Layer

Author:

Martínez Germán1,Valero Francisco1,Vázquez Luis1

Affiliation:

1. Universidad Complutense de Madrid, Madrid, Spain

Abstract

Abstract The authors have estimated the diurnal evolution of Monin–Obukhov length, friction velocity, temperature scale, surface heat flux, eddy-transfer coefficients for momentum and heat, and turbulent viscous dissipation rate on the Martian surface layer for a complete sol belonging to the Pathfinder mission. All these magnitudes have been derived from in situ wind and temperature measurements at around 1.3-m height and simulated ground temperature (from 0600 sol 25 to 0600 sol 26). Previously, neither values of turbulent viscous dissipation rate and eddy-transfer coefficients from in situ measurements for the Martian surface layer nor diurnal evolutions of all the previously mentioned turbulent parameters for the Pathfinder had been obtained. Monin–Obukhov similarity theory for stratified surface layers has been applied to obtain the results. The values assigned to the surface roughness and the applied parameterization of the interfacial sublayer will be discussed in detail with respect to the results’ sensitivity to them. The authors have found similarities concerning the order of magnitude and qualitative behavior of Monin–Obukhov length, friction velocity, and turbulent viscous dissipation rate on Earth and on Mars. However, quantities directly related to the lower Martian atmospheric density and thermal inertia, like temperature scale and hence surface heat flux, range over different orders of magnitude. Additionally, turbulent exchanges in the first few meters have been found to be just two orders of magnitude higher than the molecular ones, whereas on Earth around five orders of magnitude separate both mechanisms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

1. Modeling the 24-hour evolution of the mean and turbulent structure of the planetary boundary layer.;André;J. Atmos. Sci.,1978

2. Introduction to Micrometeorology.;Arya,2001

3. Exchange processes at the earth–atmosphere interface.;Brutsaert,1982

4. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results.;Christensen;J. Geophys. Res.,2001

5. Overview of the Mars Pathfinder Mission and assessment of landing site predictions.;Golombek;Science,1997

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3