Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System

Author:

Chen Fei1,Manning Kevin W.1,LeMone Margaret A.1,Trier Stanley B.1,Alfieri Joseph G.2,Roberts Rita1,Tewari Mukul1,Niyogi Dev3,Horst Thomas W.1,Oncley Steven P.1,Basara Jeffrey B.4,Blanken Peter D.2

Affiliation:

1. National Center for Atmospheric Research,& Boulder, Colorado

2. University of Colorado, Boulder, Colorado

3. Purdue University, West Lafayette, Indiana

4. Oklahoma Climatological Survey, University of Oklahoma, Norman, Oklahoma

Abstract

AbstractThis paper describes important characteristics of an uncoupled high-resolution land data assimilation system (HRLDAS) and presents a systematic evaluation of 18-month-long HRLDAS numerical experiments, conducted in two nested domains (with 12- and 4-km grid spacing) for the period from 1 January 2001 to 30 June 2002, in the context of the International H2O Project (IHOP_2002). HRLDAS was developed at the National Center for Atmospheric Research (NCAR) to initialize land-state variables of the coupled Weather Research and Forecasting (WRF)–land surface model (LSM) for high-resolution applications. Both uncoupled HRDLAS and coupled WRF are executed on the same grid, sharing the same LSM, land use, soil texture, terrain height, time-varying vegetation fields, and LSM parameters to ensure the same soil moisture climatological description between the two modeling systems so that HRLDAS soil state variables can be used to initialize WRF–LSM without conversion and interpolation. If HRLDAS is initialized with soil conditions previously spun up from other models, it requires roughly 8–10 months for HRLDAS to reach quasi equilibrium and is highly dependent on soil texture. However, the HRLDAS surface heat fluxes can reach quasi-equilibrium state within 3 months for most soil texture categories. Atmospheric forcing conditions used to drive HRLDAS were evaluated against Oklahoma Mesonet data, and the response of HRLDAS to typical errors in each atmospheric forcing variable was examined. HRLDAS-simulated finescale (4 km) soil moisture, temperature, and surface heat fluxes agreed well with the Oklahoma Mesonet and IHOP_2002 field data. One case study shows high correlation between HRLDAS evaporation and the low-level water vapor field derived from radar analysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3