Evolution of Tsunami-Induced Internal Acoustic–Gravity Waves

Author:

Wei Chen1,Bühler Oliver1,Tabak Esteban G.1

Affiliation:

1. Courant Institute of Mathematical Sciences, New York University, New York, New York

Abstract

Abstract The authors present an idealized theoretical and numerical study of tsunami-induced internal waves in the atmosphere. These are gravity waves modified by acoustic effects that can propagate rapidly from the ocean surface up to the ionosphere, where they are well known to leave a detectable fingerprint in airglow patterns and other remote sensing observables. Accurate modeling of the wave propagation is a prerequisite for being able to detect and decode this transient observational fingerprint by remote sensing methods. The authors study this problem by formulating the initial-value problem for linear waves forced by an idealized tsunami at the lower boundary and then employing a semianalytic Fourier–Laplace method to solve it. This approach allows them to compute the detailed time evolution of the waves while ensuring that the correct radiation condition in the vertical is satisfied at all times, a nontrivial matter for these transient waves. The authors also compare the predictions of an anelastic model with that of a fully compressible model in order to discern the importance of acoustic effects. The findings demonstrate that back-reflection at the tropopause is a significant factor for the structure of these waves and that the earliest observable signal in the ionosphere is, in fact, a fast acoustic precursor wave generated by the nearly impulsive formation of the tsunami itself.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference15 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3