The MJO Cycle Forcing of the North Atlantic Circulation: Intervention Experiments with the Community Earth System Model

Author:

Straus David M.1,Swenson Erik2,Lappen Cara-Lyn3

Affiliation:

1. George Mason University, Fairfax, Virginia

2. APEC Climate Center, Busan, South Korea

3. Texas A&M University, College Station, Texas

Abstract

Abstract A three-dimensional evolution of Madden–Julian oscillation (MJO) diabatic heating for October–March from satellite data is constructed: the heating propagates eastward for three cycles, modulated by the likelihood for a given MJO phase to occur on a given calendar day. This heating is added to the temperature tendencies of each member of an ensemble of 48 (1 October–31 March) simulations with the Community Earth System Model. The leading two most predictable modes of the planetary wave vertically integrated total (added plus model generated) heating capture 81% of the ensemble-mean variance and form an eastward-propagating oscillation with very high signal-to-noise ratio. The two most predictable modes of the extratropical Northern Hemisphere 200-hPa height form an oscillation, as do those of the 300-hPa height tendency due to synoptic vorticity flux convergence, the 200-hPa Rossby wave source, and the envelope transient kinetic energy. The North Atlantic Oscillation (NAO+) occurs 15–25 days after the MJO convection crosses the 90°E meridian, supported by synoptic vorticity flux convergence and a distinct pattern of Rossby wave source. The daily North Atlantic circulation anomalies are categorized into four circulation regimes with a cluster analysis. The NAO+ and NAO− are equally likely in the control model runs, but the NAO+ is 10% more likely in the model runs with heating, compared to a difference of 14% in reanalyses. The daily occurrence of the NAO+ regime in the heating ensemble shows maxima at times when the leading two optimal modes of height also indicate NAO+ but also shows maxima at other times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3