A Simple Analytical Model of the Nocturnal Low-Level Jet over the Great Plains of the United States

Author:

Du Yu1,Rotunno Richard2

Affiliation:

1. Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

2. National Center for Atmospheric Research,* Boulder, Colorado

Abstract

Abstract A simple analytical model including both diurnal thermal forcing over sloping terrain (the “Holton” mechanism) and diurnally varying boundary layer friction (the “Blackadar” mechanism) is developed to account for the observed amplitude and phase of the low-level jet (LLJ) over the Great Plains and to understand better the role of each mechanism. The present model indicates that, for the pure Holton mechanism (time-independent friction coefficient), the maximum southerly wind speed occurs (depending on the assumed friction coefficient) between sunset and midnight local standard time, which is earlier than the observed after-midnight maximum. For the pure Blackadar mechanism (time-independent thermal forcing), the present model shows that generally occurs later (closer to sunrise) than observed and has a strong latitudinal dependence. For both mechanisms combined, the present model indicates that occurs near to the observed time, which lies between the time obtained in the pure Holton mechanism and the time obtained in the pure Blackadar mechanism; furthermore, is larger (and closer to that observed) than in each one considered individually. The amplitude and phase of the LLJ as a function of latitude can be obtained by the combined model by allowing for the observed latitude-dependent mean and diurnally varying thermal forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3