Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes

Author:

Morrison Hugh1,Milbrandt Jason A.2,Bryan George H.1,Ikeda Kyoko1,Tessendorf Sarah A.1,Thompson Gregory1

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. Atmospheric Numerical Prediction Research, Environment Canada, Dorval, Quebec, Canada

Abstract

Abstract A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3