Dynamical Response to the QBO in the Northern Winter Stratosphere: Signatures in Wave Forcing and Eddy Fluxes of Potential Vorticity

Author:

White Ian P.1,Lu Hua2,Mitchell Nicholas J.3,Phillips Tony2

Affiliation:

1. British Antarctic Survey, Cambridge, and Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom

2. British Antarctic Survey, Cambridge, United Kingdom

3. Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom

Abstract

Abstract Wave–mean flow interactions associated with the Holton–Tan effect (HTE), whereby the tropical quasi-biennial oscillation (QBO) modulates the Northern Hemisphere wintertime stratospheric polar vortex, are studied using the ERA-Interim dataset. Significant evidence of the HTE in isentropic coordinates is found, with a weaker and warmer polar vortex present when the lower-stratospheric QBO is in its easterly phase (QBOe). For the first time, the authors quantify the QBO modulation of wave propagation, wave–mean flow interaction, and wave decay/growth via a calculation of potential vorticity (PV)-based measures, the zonal-mean momentum budget, and up-/downgradient eddy PV fluxes. The effect of the tropospheric subtropical jet on QBO modulation of the wave activity is also investigated. In the subtropical-to-midlatitude lower stratosphere, QBOe is associated with an enhanced upward flux of wave activity, and corresponding wave convergence and wave growth, which leads to a stronger poleward zonal-mean meridional circulation and consequently a warmer polar region. In the middle stratosphere, QBOe is associated with increased poleward wave propagation, leading to enhanced wave convergence and in situ wave growth at high latitudes and contributing to the weaker polar vortex. In agreement with recent studies, the results suggest that the critical-line effect cannot fully account for these wave anomalies associated with the HTE. Instead, it is suggestive of a new, additional mechanism that hinges on the QBO-induced meridional circulation effect on the latitudinal positioning of the subtropical jet. Under QBOe, the QBO-induced meridional circulation causes a poleward shift of the subtropical jet, encouraging more waves to propagate into the stratosphere at midlatitudes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference62 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3