Entropy Production and Climate Efficiency

Author:

Bannon Peter R.1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract Earth’s climate system is a heat engine, absorbing solar radiation at a mean input temperature Tin and emitting terrestrial radiation at a lower, mean output temperature Tout < Tin. These mean temperatures, defined as the ratio of the energy to entropy input or output, determine the Carnot efficiency of the system. The climate system, however, does no external work, and hence its work efficiency is zero. The system does produce entropy and exports it to space. The efficiency associated with this entropy production is defined for two distinct representations of the climate system. The first defines the system as the sum of the various material subsystems, with the solar and terrestrial radiation fields constituting the surroundings. The second defines the system as a control volume that includes the material and radiation systems below the top of the atmosphere. These two complementary representations are contrasted using a radiative–convective equilibrium model of the climate system. The efficiency of Earth’s climate system based on its material entropy production is estimated using the two representations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3