Affiliation:
1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Abstract
Abstract
Using a method for initiating a quasi-stationary, heavy-rain-producing elevated mesoscale convective system in an idealized numerical modeling framework, a series of experiments is conducted in which a shallow layer of drier air is introduced within the near-surface stable layer. The environment is still very moist in the experiments, with changes to the column-integrated water vapor of only 0.3%–1%. The timing and general evolution of the simulated convective systems are very similar, but rainfall accumulation at the surface is changed by a much larger fraction than the reduction in moisture, with point precipitation maxima reduced by up to 29% and domain-averaged precipitation accumulations reduced by up to 15%. The differences in precipitation are partially attributed to increases in the evaporation rate in the shallow subcloud layer, though this is found to be a secondary effect. More importantly, even though the near-surface layer has strong convective inhibition in all simulations and the convective available potential energy of the most unstable parcels is unchanged, convection is less intense in the experiments with drier subcloud layers because less air originating in that layer rises in convective updrafts. An additional experiment with a cooler near-surface layer corroborates these findings. The results from these experiments suggest that convective systems assumed to be elevated are, in fact, drawing air from near the surface unless the low levels are very stable. Considering that the moisture differences imposed here are comparable to observational uncertainties in low-level temperature and moisture, the strong sensitivity of accumulated precipitation to these quantities has implications for the predictability of extreme rainfall.
Publisher
American Meteorological Society
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献