Improvement of Albedo and Snow-Cover Simulation during Snow Events over the Tibetan Plateau

Author:

Liu Lian1234ORCID,Ma Yaoming15623

Affiliation:

1. a Land-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

2. d National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri, China

3. e Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing, China

4. f China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad, Pakistan

5. b College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

6. c College of Atmospheric Science, Lanzhou University, Lanzhou, China

Abstract

Abstract The snow albedo is a vital component of land–atmosphere coupling models. It plays a critical role in regulating land surface energy exchange by controlling incoming solar radiation absorbed by the land surface and influencing the timing and rate of snowmelt. Accurate snow albedo simulation is essential to obtain surface energy balance and snow-cover estimates. Here, the simulation of albedo and snow cover using the Weather Research and Forecasting Model and an improved snow albedo scheme is verified against satellite-retrieved products during and immediately following eight snowfall events over the Tibetan Plateau. The improved model successfully characterizes the spatial pattern and inverted U-shaped temporal pattern of albedo over the entire Tibetan Plateau. This is attributed to the local optimization of snow-age parameters and explicit consideration of snow depth in the improved scheme. Compared with the previous model, the model proposed herein greatly decreases the overestimated albedo (by 0.13–0.27), yielding a bias range of ±0.08, mean relative bias decrease of 70%, and significant increase in the spatial correlation coefficient of 0.03–0.39 (mean: 0.13). The significant improvements of albedo estimates appear in deep snow-covered regions, largely attributed to parameter optimization related to snow albedo decay, while less improvements appear over the shallow snow-covered regions. Accurate reproduction of the spatiotemporal variation in albedo alleviated snow-cover overestimation by small amounts. For snow-cover estimates, the improved model consistently decreases the false-alarm rate by 0.03, and increases the overall accuracy and equitable threat score by 0.04 and 0.03, respectively. Moreover, the improved scheme shows an equivalent improvement of albedo estimates at both 1- and 5-km grid spacing over the eastern Tibetan Plateau; this is also true for snow-cover estimates. Significance Statement Snow albedo schemes in widely used numerical weather prediction models show notable shortcomings in complex mountainous regions, hindering accurate surface energy balance and snow-cover prediction. The purpose of this study is to better understand the role of snow albedo on snow-cover estimates and reveal the application potential of an improved snow albedo scheme across the Tibetan Plateau. This is important because snow albedo influences the timing and rate of snowmelt, and in turn snow-cover estimates, through regulating the surface energy budget. Our results highlight the strong application potential of our improved scheme in reducing snow simulation errors, confirm the importance of snow depth on snow albedo, and provide a new perspective for improving the accuracy of snow forecast over the topographically high Tibetan Plateau.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Reference54 articles.

1. Implementation and evaluation of a unified turbulence parameterization throughout the canopy and roughness sublayer in Noah-MP snow simulations;Abolafia-Rosenzweig, R.,2021

2. Evaluation and optimization of snow albedo scheme in Noah‐MP land surface model using in situ spectral observations in the Colorado Rockies;Abolafia-Rosenzweig, R.,2022

3. A simple model of snow albedo decay using observations from the Community Collaborative Rain, Hail, and Snow-Albedo (CoCoRaHS-Albedo) network;Amaral, T.,2017

4. Effects of snow physical parameters on shortwave broadband albedos;Aoki, T.,2003

5. What is the trade-off between snowpack stratification and simulated snow water equivalent in a physically-based snow model?;Augas, J.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3