A Statistical Forecast Model for Extratropical Cyclones Including Intensity and Precipitation Type

Author:

Cavanagh Rebekah12,Oliver Eric C. J.1

Affiliation:

1. a Dalhousie University, Halifax, Nova Scotia, Canada

2. b Meteorological Service of Canada, Environment and Climate Change Canada, Toronto, Ontario, Canada

Abstract

Abstract Winter extratropical cyclones (ETCs) are dominant features of winter weather on the east coast of North America. These storms are characterized by high winds and heavy precipitation (rain, snow, and ice). ETCs are well predicted by numerical weather prediction models (NWPs) at short- to midrange forecast lead times, but prediction on seasonal time scales is lacking. We develop a set of multiple linear regression models, using stepwise regression and cross validation, to predict the number of storms expected to affect a specific location throughout the winter storm season. Each model in the set predicts a specific storm type (e.g., snow, rain, or bomb storms). This set of models is applied in a probabilistic forecast framework that uses the probability density function of the prediction in combination with climatological mean storm activity. The resulting forecast makes statements about the likelihood of below-average, average, or above-average activity for all storms and for each of the type-specific subsets of storms. Though this forecast framework could in theory be applied anywhere, we demonstrate its skill in forecasting the characteristics of the winter storm season experienced in Halifax, Nova Scotia, Canada. Significance Statement Winter storms are a disruptive but inevitable part of life on the eastern coast of North America all the way from the Carolinas to Labrador. Knowing each fall what to expect for the upcoming winter storm season is not only a matter of public interest, but also of great public safety and financial importance. Here we develop a model that uses the state of the atmosphere over the month of September to forecast the upcoming winter storm characteristics for a specified region of interest. Our model uses a multiple linear regression approach to make skilled forecasts including probability statements about the level and type of storm activity. Forecasts can be used to inform planning for the winter ahead.

Funder

National Sciences and Engineering Research Council of Canada Discovery Grant

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference25 articles.

1. Seasonal forecast skill for extratropical cyclones and windstorms;Befort, D. J.,2019

2. Global observations of nonlinear mesoscale eddies;Chelton, D. B.,2011

3. Statistical prediction of seasonal East Coast winter storm frequency;DeGaetano, A. T.,2002

4. Seasonal prediction skill and predictability of the Northern Hemisphere storm track variability in Project Minerva;Feng, X.,2019

5. Atlantic seasonal hurricane frequency. Part II: Forecasting its variability;Gray, W. M.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3