Evaluation of Parametric Tropical Cyclone Surface Winds over the Eastern Australian Region

Author:

O’Grady Julian1ORCID,Ramsay Hamish1,McInnes Kathleen1,Gregory Rebecca1

Affiliation:

1. a CSIRO Environment, Melbourne, Victoria, Australia

Abstract

Abstract Hazard studies based on thousands of synthetic tropical cyclone (TC) events require a validated model representation of the surface wind field. Here, we assess three different TC parametric vortex models with input from four along-track parameter studies of the TC size and shape, based on statistical formulation of the relationships to observed TC intensity, geographic location, and forward transition speed. The 12 model combinations are compared to in situ 10-min observed surface mean wind speeds for 10 TCs that made landfall over Queensland, Australia, which occurred over the period 2006–17. Empirical wind reduction factors to reduce gradient winds to the surface are recalculated for the more recent TCs at both offshore (ocean, small islands, reefs, and moorings) and onshore (land) locations. To improve the wind comparisons over ocean and land, a secondary reduction factor was developed based on an inland decay function. Pearson correlations for the unadjusted modeled peak wind speed from 118 instances of a TC passing a weather station sit between a range of 0.57 and 0.65 for the 12 model combinations. Using the secondary reduction factor based on the inland decay function increases the range of correlation to 0.74–0.81. Based on the assessment of the instances of peak surface wind speed correlations, bias, and root-mean-square error, along with the correlation 48 h around the peak, the top-ranked performing model combination for the region was an along-track parameter study with a double-vortex model, both previously tested for the South Pacific basin. Significance Statement When assessing tropical cyclone hazards, users are presented with several simplified parametric models to describe the surface wind field of tropical cyclones. These parametric models are used routinely for risk assessment of cyclonic winds, as well as for input to surge and wave models used in coastal hazard assessments. Differences between the models include the formulation of the parametric cyclone model, the way winds above the boundary layer are specified at the surface and along-track parameters that describe the cyclones’ size and shape. Of the 12 model combinations investigated in this study, the top-ranked performing model combination for the region was an along-track parameter equation with a double-vortex model, which were both tested previously for the South Pacific basin. Analysis is performed to show unadjusted modeled winds overestimate observed 10-min surface winds over the ocean by around 13% (median) and over land by around 73.9% (median), which is resolved in this study with a secondary empirical wind reduction factor. These findings will support future modeling of tropical cyclone winds for multiple applications, including regional risk assessment and coastal hazard studies.

Funder

Australian Climate Service

Publisher

American Meteorological Society

Reference58 articles.

1. A statistical–parametric model of tropical cyclones for hazard assessment;Arthur, W. C.,2021

2. Estimation of global tropical cyclone wind speed probabilities using the STORM dataset;Bloemendaal, N.,2020

3. A globally consistent local-scale assessment of future tropical cyclone risk;Bloemendaal, N.,2022

4. Bosserelle, C., 2016: TCwindgen: Quickly generate wind field from hurricane/Tropical cyclones based on track parameter. C CUDA implementation of TCRM wind model. GitHub, accessed 9 January 2023, https://github.com/CyprienBosserelle/TCwindgen.

5. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling;Bourassa, M. A.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3