Structure and Characteristics of Synoptic-Scale Waves in the Northern Eurasian Storm Track during Summer

Author:

Fukutomi Yoshiki1,Hiyama Tetsuya1

Affiliation:

1. a Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

Abstract

Abstract This study examined the dominant structure and characteristics of synoptic-scale (2–8-day periods) waves over northern Eurasia during 40 summer seasons (June–August, 1979–2018). The synoptic-scale wave patterns are isolated using an extended empirical orthogonal function (EEOF) analysis on the 300-hPa geopotential height anomalies, and a composite based on atmospheric circulation fields and gridded precipitation product. The wave patterns are classified into two types from two pairs of EEOF modes. These two different wave types are defined as the polar frontal (PF) mode and Arctic frontal (AF) mode, respectively. The PF-mode waves are initiated in the North Atlantic sector to the west of the British Isles. They propagate eastward across Siberia into the North Pacific, and produce precipitation mainly over the Eurasian polar frontal zone. The AF-mode wave train arcs along the climatological Arctic frontal zone (AFZ). The AF-mode waves originate near the Scandinavian Peninsula. Their eastward passage brings precipitation along the AFZ. The development of the synoptic-scale waves is reflected by unique background conditions over northern Eurasia. The lower-tropospheric baroclinicity in southern Siberia and central Asia favored the baroclinic growth of the PF-mode waves. The AF-mode waves are trapped in the well-organized baroclinic zone along the north coast of the Eurasian continent. The baroclinic zone is coupled with a band of large meridional gradient of potential vorticity in the upper troposphere, suggesting that this band acts as a waveguide for the AF-mode waves. Significance Statement This study examines the synoptic-scale waves in the 2–8-day range of time scales over northern Eurasia during summer. The synoptic-scale waves are categorized into two distinct types at different latitude bands by the EEOF analysis on the 300-hPa z anomalies. They are defined as polar frontal (PF) mode and Arctic frontal (AF) mode. Then the EEOF-based composite analysis is conducted to detect the large-scale circulation anomalies associated with the propagation of different types of synoptic-scale waves. The structure and characteristics are examined. The roles of the mean background conditions in the development and propagation of the respective types are discussed. The behavior of these wave disturbances as rain-producing weather systems is also examined.

Funder

Japan Society for the Promotion of Science

MEXT

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference68 articles.

1. Barry, R. G., and R. J. Chorley, 2010: Atmosphere, Weather, and Climate. 10th ed. Routledge, 516 pp.

2. MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment;Beck, H. E.,2019

3. Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data;Berbery, E. H.,1996

4. Time variation of 500 mb height fluctuations with long, intermediate and short time scales as deduced from lag-correlation statistics;Blackmon, M. L.,1984

5. Downstream development of baroclinic waves as inferred from regression analysis;Chang, E. K. M.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3