Simulated Diurnal Pulses in Hurricane Dorian (2019)

Author:

Piersante Jeremiah O.1,Corbosiero Kristen L.1,Fovell Robert G.1

Affiliation:

1. a Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Abstract

Abstract Radially outward-propagating, diurnal pulses in tropical cyclones (TCs) are associated with TC intensity and structural changes. The pulses are observed to feature either cloud-top cooling or warming, so-called cooling pulses (CPs) or warming pulses (WPs), respectively, with CPs posing a greater risk for hazardous weather because they often assume characteristics of tropical squall lines. The current study evaluates the characteristics and origins of simulated CPs using various convection-permitting Weather Research and Forecasting (WRF) Model simulations of Hurricane Dorian (2019), which featured several CPs and WPs over the tropical Atlantic Ocean. CP evolution is tested against choice of microphysics parameterization, whereby the Thompson and Morrison schemes present distinct mechanisms for CP creation and propagation. Specifically, the Thompson CP is convectively coupled and propagates outward with a rainband within 100–300 km of the storm center. The Morrison CP is restricted to the cirrus canopy and propagates radially outward in the upper-level outflow layer, unassociated with any rainband, within 200–600 km of the storm center. The Thompson simulation better represents the observations of this particular event, but it is speculated that CPs in nature can resemble characteristics from either MP scheme. It is, therefore, necessary to evaluate pulses beyond just brightness temperature (e.g., reflectivity, rain rate), especially within simulations where full fields are available. Significance Statement Tropical cyclone size and structure are influenced by the time of day. Identifying and predicting such characteristics is critical for evaluating hazardous weather risk of storms close to land. While satellite observations are valuable for recognizing daily fluctuations of tropical cyclone clouds as seen from space, they do not reliably capture what occurs at the surface. To investigate the relationship between upper-level cloud oscillations and rainbands, this study analyzes simulations of a major hurricane along the coast of Florida. The results show that rainbands are not always tied to changes in cloud tops, suggesting multiple pathways toward the daily oscillation of upper-level tropical cyclone clouds.

Funder

National Science Foundation

University at Albany

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Microphysical process comparison of three microphysics parameterization schemes in the WRF Model for an idealized squall-line case study;Bao, J.-W.,2019

2. Influence of cloud–radiative forcing on tropical cyclone structure;Bu, Y. P.,2014

3. Computational and Information Systems Laboratory, 2017: Cheyenne: SGI ICE XA Cluster. UCAR/NCAR, accessed 1 March 2023, https://doi.org/10.5065/D6RX99HX.

4. The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves;Corbosiero, K. L.,2006

5. Electrically active tropical cyclone diurnal pulses in the Atlantic basin;Ditchek, S. D.,2019a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3