Affiliation:
1. Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada
Abstract
Abstract
Quantile mapping bias correction algorithms are commonly used to correct systematic distributional biases in precipitation outputs from climate models. Although they are effective at removing historical biases relative to observations, it has been found that quantile mapping can artificially corrupt future model-projected trends. Previous studies on the modification of precipitation trends by quantile mapping have focused on mean quantities, with less attention paid to extremes. This article investigates the extent to which quantile mapping algorithms modify global climate model (GCM) trends in mean precipitation and precipitation extremes indices. First, a bias correction algorithm, quantile delta mapping (QDM), that explicitly preserves relative changes in precipitation quantiles is presented. QDM is compared on synthetic data with detrended quantile mapping (DQM), which is designed to preserve trends in the mean, and with standard quantile mapping (QM). Next, methods are applied to phase 5 of the Coupled Model Intercomparison Project (CMIP5) daily precipitation projections over Canada. Performance is assessed based on precipitation extremes indices and results from a generalized extreme value analysis applied to annual precipitation maxima. QM can inflate the magnitude of relative trends in precipitation extremes with respect to the raw GCM, often substantially, as compared to DQM and especially QDM. The degree of corruption in the GCM trends by QM is particularly large for changes in long period return values. By the 2080s, relative changes in excess of +500% with respect to historical conditions are noted at some locations for 20-yr return values, with maximum changes by DQM and QDM nearing +240% and +140%, respectively, whereas raw GCM changes are never projected to exceed +120%.
Publisher
American Meteorological Society
Cited by
857 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献