The Nature of a Heat Wave in Eastern Argentina Occurring during SALLJEX

Author:

Cerne S. Bibiana1,Vera Carolina S.1,Liebmann Brant2

Affiliation:

1. Centro de Investigaciones del Mar y la Atmósfera, CONICET, and Departamento de Ciencias de la Atmósfera y los Océanos, Universidad de Buenos Aires, Buenos Aires, Argentina

2. CIRES Climate Diagnostics Center, Boulder, Colorado

Abstract

Abstract This note describes the physical processes associated with the occurrence of a heat wave over central Argentina during the austral summer of 2002/03, during which the South American Low-Level Jet Experiment (SALLJEX) was carried out. The SALLJEX heat wave that lasted between 25 January and 2 February 2003 was punctuated by extreme conditions during its last 3 days, with the highest temperature recorded over the last 35 yr at several stations of the region. It was found that not only the activity of synoptic-scale waves, but also the intraseasonal oscillation variability, had a strong impact on the temperature evolution during this summer. During the weeks previous to the heat wave development, an intensified South Atlantic convergence zone (SACZ) dominated the atmospheric conditions over tropical South America. Temperatures started to increase in the subtropics due to the subsidence and diabatic warming associated with the SACZ, as depicted by SALLJEX upper-air observations. An extratropical anticyclone that evolved along southern South America further intensified subsidence conditions. By the end of January the warming processes associated with SACZ activity weakened, while horizontal temperature advection began to dominate over central Argentina due to the intensification of the South American low-level jet. This mechanism led to temperature extremes by 2 February with temperature anomalies at least two standard deviations larger than the climatological mean values. Intense solar heating favored by strong subsidence was responsible for the heat wave until 31 January, after which horizontal temperature advection was the primary process associated with the temperature peak.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3