Influence of Stokes Drift Decay Scale on Langmuir Turbulence

Author:

Kukulka Tobias1,Harcourt Ramsey R.2

Affiliation:

1. University of Delaware, Newark, Delaware

2. University of Washington, Seattle, Washington

Abstract

AbstractAccurately scaling Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) is critical for improving ocean, weather, and climate models. The physical processes by which the structure of LT depends on surface waves’ Stokes drift decay length scale are examined. An idealized model for OSBL turbulent kinetic energy (TKE) provides a conceptual framework with three physical processes: TKE transport, dissipation, and production by the Craik–Leibovich (CL) vortex force (VF) associated with the Stokes drift shear. TKE profiles depend on OSBL depth h, surface roughness length z0, and wavenumber k through the nondimensional parameters kh and kz0. These parameters determine the rate and length scale for the dissipation of TKE produced by the CL-VF. For kz0 ≫ 1, TKE input by the CL-VF is governed by a surface flux with TKE rapidly decaying with depth. Only for kz0 < 1 can TKE penetrate deeper into the OSBL, with the TKE penetration depth controlled by kh. Turbulence-resolving large-eddy simulation results support this conceptual framework and indicate that the dominant Langmuir cell size scales with (kh)−1. Within the depth of dominant Langmuir cells, TKE dissipation is approximately balanced by CL-VF production. Shorter waves contribute less to deeper vertical velocity variance 〈w2〉 because the CL-VF is less effective in generating larger-scale LT. Depth-averaged 〈w2〉 scales with a modified Langmuir number Laϕ = (u*/u)1/2, where u* denotes the water-side surface friction velocity and u is a depth-integrated weighted Stokes drift shear or, equivalently, a spectrally filtered surface Stokes drift.

Funder

Directorate for Geosciences

Division of Ocean Sciences

National Science Foundation

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3