How Much Do Different Land Models Matter for Climate Simulation? Part I: Climatology and Variability

Author:

Wei Jiangfeng1,Dirmeyer Paul A.1,Guo Zhichang1,Zhang Li1,Misra Vasubandhu2

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

2. Department of Meteorology and Center for Ocean–Atmosphere Prediction Studies, The Florida State University, Tallahassee, Florida

Abstract

Abstract An atmospheric general circulation model (AGCM) is coupled to three different land surface schemes (LSSs), both individually and in combination (i.e., the LSSs receive the same AGCM forcing each time step and the averaged upward surface fluxes are passed back to the AGCM), to study the uncertainty of simulated climatologies and variabilities caused by different LSSs. This tiling of the LSSs is done to study the uncertainty of simulated mean climate and climate variability caused by variations between LSSs. The three LSSs produce significantly different surface fluxes over most of the land, no matter whether they are coupled individually or in combination. Although the three LSSs receive the same atmospheric forcing in the combined experiment, the inter-LSS spread of latent heat flux can be larger or smaller than the individually coupled experiment, depending mostly on the evaporation regime of the schemes in different regions. Differences in precipitation are the main reason for the different latent heat fluxes over semiarid regions, but for sensible heat flux, the atmospheric differences and LSS differences have comparable contributions. The influence of LSS uncertainties on the simulation of surface temperature is strongest in dry seasons, and its influence on daily maximum temperature is stronger than on minimum temperature. Land–atmosphere interaction can dampen the impact of LSS uncertainties on surface temperature in the tropics, but can strengthen their impact in middle to high latitudes. Variations in the persistence of surface heat fluxes exist among the LSSs, which, however, have little impact on the global pattern of precipitation persistence. The results provide guidance to future diagnosis of model uncertainties related to LSSs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3