Affiliation:
1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
2. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
Abstract
Abstract
The authors use a new and novel heat balance formalism for the upper 50 m of the Niño-3 region (5°N–5°S, 90°–150°W) to investigate the oceanographic processes underlying interannual sea surface temperature (SST) variations in the eastern equatorial Pacific. The focus is on a better understanding of the relationship between local and remote atmospheric forcing in generating SST anomalies associated with El Niño–Southern Oscillation (ENSO) events. The heat balance analysis indicates that heat advection across 50-m depth and across 150°W are the important oceanic mechanisms responsible for temperature variations with the former being dominant. On the other hand, net surface heat flux adjusted for penetrative radiation damps SST. Jointly, these processes can explain most of interannual variations in temperature tendency averaged over the Niño-3 region. Decomposition of vertical advection across the bottom indicates that the mean seasonal advection of anomalous temperature (the so-called thermocline feedback) dominates and is highly correlated with 20°C isotherm depth variations, which are mainly forced by remote winds in the western and central equatorial Pacific. Temperature advection by anomalous vertical velocity (the “Ekman feedback”), which is highly correlated with local zonal wind stress variations, is smaller with an amplitude of about 40% on average of remotely forced vertical heat advection. These results support those of recent empirical and modeling studies in which local atmospheric forcing, while not dominant, significantly affects ENSO SST variations in the eastern equatorial Pacific.
Publisher
American Meteorological Society
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献