GiST: A Stochastic Model for Generating Spatially and Temporally Correlated Daily Rainfall Data

Author:

Baigorria Guillermo A.1,Jones James W.1

Affiliation:

1. Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida

Abstract

Abstract Weather generators are tools that create synthetic daily weather data over long periods of time. These tools have also been used for downscaling monthly to seasonal climate forecasts, from global and regional circulation models to daily values for use as inputs for crop and other environmental models. One main limitation of most weather generators is that they do not take into account the spatial structure of weather. Spatial correlation of daily rainfall is important when one aggregates, for example, simulated crop yields or hydrology in a watershed or region. A method was developed to generate realizations of daily rainfall for multiple sites in an area while preserving the spatial and temporal correlations among sites. A two-step method generates rainfall events at multiple sites followed by rainfall amounts at sites where generated rainfall events occur. The generation of rainfall events was based on a new orthogonal Markov chain for discrete distributions. For generating rainfall amounts, a vector of random numbers (from a uniform distribution), of order equal to the number of locations with rainfall events that were generated to occur in a day, was matrix-multiplied by the corresponding factorized correlation matrix to create spatially correlated random numbers. Elements from the resulting vector were transformed to a gamma distribution using cumulative probability functions for each location and rescaled to rainfall amounts. One study area was located in north-central Florida, where correlated rainfall data were generated for seven weather stations to evaluate its performance versus a widely used single-site weather generator. A second area was in North Carolina, where rainfall was generated for 25 weather stations to evaluate the effects of a larger number of stations in other regions. One thousand yearlong replications of daily rainfall data were generated for each area. Monthly spatial correlations of generated daily rainfall events and amounts among all pairs of weather stations closely matched their observed counterparts. For daily rainfall amounts the correlation coefficients between the observed pairwise correlation coefficients and the ones estimated from synthetic data among weather stations were 0.977 for Florida and 0.964 for North Carolina. The performance of the geospatial–temporal (GiST) weather generator was also analyzed by comparing the distributions of lengths of dry and wet spells, joint probabilities, Markov transitional probabilities, distance decay of correlation functions, and regionwide days without rainfall at any station. Multiannual mean and standard deviation of the number of rainy days per month and mean monthly rainfall were also calculated. All comparisons between observed and generated rainfall events and amounts using the GiST weather generator were highly correlated. The root-mean-square errors of pairwise correlation values ranged from 0.05 to 0.11 for rainfall events and from 0.03 to 0.06 for amounts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3