A Linear Stochastic Field Model of Midlatitude Mesoscale Variability

Author:

Samelson R. M.1,Schlax M. G.1,Chelton D. B.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

AbstractA semiempirical model of midlatitude sea surface height (SSH) variability is formulated and tested against two decades of weekly global fields of merged altimeter data. The model is constrained to match approximately the observed SSH wavenumber power spectrum, but it predicts the spatiotemporal SSH field structure as a propagating, damped, linear response to a stochastic forcing field. An objective, coherent-eddy identification and tracking procedure is applied to the model and altimeter SSH fields, with a focus on eddies with lifetimes L ≥ 16 weeks. The model eddy dataset reproduces the basic global-mean characteristics of the altimeter eddy dataset, including the structure of mean amplitude and scale life cycles, the number distributions versus lifetime, and the distributions of all eddy length scale realizations. The model underpredicts the numbers of eddy realizations with large amplitudes and large scales, overpredicts the growth of mean amplitude and scale with lifetime, and modestly overpredicts the curvature of the mean amplitude life cycle and the number of eddies with intermediate lifetimes. The stochastic forcing evidently represents nonlinear dynamical interactions, implying that eddy splitting and merging events are equally likely, and that mesoscale nonlinearity is weaker than longwave linearity but as strong as shortwave dispersion. The time-reversal symmetry of the life cycles is explained by the time reversibility of the underlying stochastic model. The random SSH increment processes are effectively continuous on the derived 25-week damping time scale, with SSH-increment standard deviation σW ≈ 2.5 × 10−3 cm s−1/2.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inferring Tracer Diffusivity From Coherent Mesoscale Eddies;Journal of Advances in Modeling Earth Systems;2024-04

2. Random Movement of Mesoscale Eddies in the Global Ocean;Journal of Physical Oceanography;2020-08-01

3. The Ocean Mesoscale Regime of the Reduced-Gravity Quasigeostrophic Model;Journal of Physical Oceanography;2019-10

4. On data-driven augmentation of low-resolution ocean model dynamics;Ocean Modelling;2019-10

5. Contrasting Short‐Lived With Long‐Lived Mesoscale Eddies in the Global Ocean;Journal of Geophysical Research: Oceans;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3