Turbulent Upper-Ocean Mixing Affected by Meltwater Layers during Arctic Summer

Author:

Randelhoff Achim1,Fer Ilker2,Sundfjord Arild3

Affiliation:

1. Institute for Arctic and Marine Biology, University of Tromsø, The Arctic University of Norway, and Norwegian Polar Institute, Tromsø, Norway

2. Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

3. Norwegian Polar Institute, Tromsø, Norway

Abstract

AbstractEvery summer, intense sea ice melt around the margins of the Arctic pack ice leads to a stratified surface layer, potentially without a traditional surface mixed layer. The associated strengthening of near-surface stratification has important consequences for the redistribution of near-inertial energy, ice–ocean heat fluxes, and vertical replenishment of nutrients required for biological growth. The authors describe the vertical structure of meltwater layers and quantify their seasonal evolution and their effect on turbulent mixing in the oceanic boundary layer by analyzing more than 450 vertical profiles of velocity microstructure in the seasonal ice zone north of Svalbard. The vertical structure of the density profiles can be summarized by an equivalent mixed layer depth hBD, which scales with the depth of the seasonal stratification. As the season progresses and melt rates increase, hBD shoals following a robust pattern, implying stronger vertical stratification, weaker vertical eddy diffusivity, and reduced vertical extent of the mixing layer, which is bounded by hBD. Through most of the seasonal pycnocline, the vertical eddy diffusivity scales inversely with buoyancy frequency (KρN−1). The presence of mobile sea ice alters the magnitude and vertical structure of turbulent mixing primarily through stronger and shallower stratification, and thus vertical eddy diffusivity is greatly reduced under sea ice. This study uses these results to develop a quantitative model of surface layer turbulent mixing during Arctic summer and discuss the impacts of a changing sea ice cover.

Funder

Utenriksdepartementet

Klima- og miljødepartementet

Centre for Ice, Climate and Ecosystems

Norges Forskningsråd

Centre for Climate Dynamics

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3