Evaluation of the NOHRSC Snow Model (NSM) in a One-Dimensional Mode

Author:

Rutter Nick1,Cline Don1,Li Long1

Affiliation:

1. National Operational Hydrologic Remote Sensing Center (NOHRSC), Chanhassen, Minnesota

Abstract

Abstract The National Operational Hydrologic Remote Sensing Center (NOHRSC) Snow Model (NSM) is an energy- and mass-balance model used by the National Oceanic and Atmospheric Administration’s National Weather Service for moderate-resolution spatially distributed snow analysis and data assimilation over the United States. The NSM was evaluated in a one-dimensional mode using meteorological and snowpit observations from five sites in Colorado collected during 2002–03. Four parameters estimated by the NSM [snow water equivalent (SWE), snow depth, average snowpack temperature, and snow surface temperature] were compared with snowpit observations and with estimates from another snow energy and mass-balance model, SNTHERM. Root-mean-squared differences (RMSDs) between snowpit SWE observations (January–June) at all sites and estimates from the NSM were about 11% (RMSD = 0.073 m) of the average maximum observed SWE from all sites of 0.694 m. SNTHERM exhibited only a slightly better agreement (RMSD = 0.066 m). During the winter and early spring period before snowpacks became isothermal at 273.15 K, both NSM and SNTHERM simulated significantly cooler average snowpack temperatures than observed (RMSD = 3 and 2 K, respectively). During this snow accumulation period estimates of SWE by both models were very similar. Differences in modeled SWE were traced to short periods (5–21 days) during isothermal conditions in early spring when the two models diverged. These events caused SWE differences that persisted throughout the ablation period and resulted in a range in melt-out times of 0.2–7.2 days between depth observations and modeled estimates. The divergence in SWE resulted from differences in snowmelt fluxes estimated by the two models, which are suggested to result from 1) liquid water fractions within a snowpack being estimated by the NSM using an internal energy method and by SNTHERM using a semiempirical temperature-based approach, and 2) SNTHERM, but not the NSM, accounting for the small liquid water fraction that coexists in equilibrium with snow when the snowpack surface is dry (<273.15 K).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell.;Andreas;J. Hydrometeor.,2004

2. Carroll, T., D.Cline, G.Fall, A.Nilsson, L.Li, and A.Rost, 2001: NOHRSC operations and the simulation of snow cover properties for the coterminous U.S. Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley, ID, Western Snow Conference, 1–14.

3. Snow surface energy exchanges and snowmelt at a continental, midlatitude Alpine site.;Cline;Water Resour. Res.,1997

4. Cline, D. W. , and Coauthors, 2003: Overview of the NASA Cold Land Processes field experiment. Microwave Remote Sensing of the Atmosphere and Environment III, C. D. Kummerow, J. Jiang, and S. Uratuka, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4894), 361–372.

5. A theory of water percolation in snow.;Colbeck;J. Glaciol.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3