Structure and Formation Mechanisms of the Northern Hemisphere Summertime Subtropical Highs

Author:

Miyasaka Takafumi1,Nakamura Hisashi1

Affiliation:

1. Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Abstract

Abstract Three-dimensional structure and dynamics of the climatological-mean summertime subtropical highs over the North Pacific and Atlantic (i.e., the Azores high) are investigated. Each of the observed surface highs is accompanied by a meridional vorticity dipole aloft, exhibiting barotropic and baroclinic structures in its northern and southern portions, respectively, in a manner dynamically consistent with the observed midtropospheric subsidence. Each of the highs develops over the relatively cool eastern ocean, where a pronounced near-surface thermal contrast exists with a heated landmass to the east. The authors demonstrate through numerical experiments that those highs can be reproduced in response to a local shallow cooling–heating couplet associated with this thermal contrast, although the upper-level response is somewhat underestimated. The model experiments suggest that the near-surface thermal contrasts associated with those surface subtropical highs over the Pacific and Atlantic can act as sources of the observed planetary waves over the Western Hemisphere. In fact, a wave activity flux for stationary Rossby waves is distinctively upward and diverging toward downstream in the upper troposphere above each of the observed surface highs. The observed wave activity injection is significant into the Azores high but not at all into the Pacific high. Since each of the subtropical highs can be reproduced reasonably well, even for the premonsoon season (i.e., May), in response to a local shallow land–sea heating contrast, it is suggested that the monsoonal convective heating may not necessarily be a significant direct forcing factor for the formation of the summertime subtropical highs. In fact, the model response is quite weak if forced only by mid- and upper-tropospheric convective heating. The present study suggests the presence of a local land–sea–atmosphere feedback loop associated with a subtropical high and a continental low to its east, which may be triggered by increasing insolation over land from spring to summer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3